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We estimate the asymptotic growth rate of the number of dimer covers of a cu-
bic lattice. Our estimate,; = 0.4466+ 0.0006 is consistent with the lower bounds
obtained by Hammersley and (later) Schrijver and the more recent improved up-
per bound obtained by Ciucu. Obtaining this estimate is an important step toward
approximating the partition function of the cubic monomer—dimer system. From
the partition function, all of the standard thermodynamic quantities can be eval-
uated. It is well known that computing; is equivalent to computing the per-
manent of a certain 0—1 matrix. We describe an extremely efficient Monte Carlo
algorithm for approximating the permanent. Previous work on Monte Carlo ap-
proaches includes the pioneering results of Jerrum and Sinclair, who use a rapidly
mixing random walk. Our method is inspired by results of Soules on convergence of
Sinkhorn balancing to obtain a maximum entropy, doubly stochastic matrix. We use
the Sinkhorn balanced matrix to generate an importance function that allows us to
do direct random sampling, rather than a random walk that converges to a limiting
distribution. @ 1999 Academic Press

1. INTRODUCTION

We use a new method for approximating the permanent of a 0—1 matrix, based or
Monte Carlo technique of importance sampling to solve the dimer covering problem in
and three dimensions, that is, to estimate the asymptotic behavior of the number of d
coverings of a regular rectangular lattice. This is an important step toward approxima
the partition function of the cubic monomer—dimer system. From the partition functi
all of the standard thermodynamic quantities can be obtained [7]. We use an exce
“importance function” that is readily available and fairly easy to compute. The importat
function is obtained from doubly stochastic matrices that are the result of applying SinkF
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APPROXIMATING THE PERMANENT 129

balancing to a particular 0—1 matrix and to some of its minors. It is known that Sinkh
balancing converges quickly for a completely supported matrix [26, 17] and, as we s
see, itis also easy to ensure that all matrices encountered are, in fact, completely supp
(All terminology is defined in Sections 2 and 3.)

The dimer covering problem is a special case of the more general monomer—d
problem, where one wishes to count the number of ways of covering a lattice with &
monomers and dimers. An extension of our method applies to the more general mono
dimer setting, but the computations are much more elaborate. We hope to report on t
a later paper. For the present paper, our specific goal is to estimate the asymptotic va

hg= lim 109PEMA(m))

m— o0 md

whered is the dimensiond is 2 or 3 in our case), and petiy(m)) is the permanent of
a particular(m?/2) x (m®/2) matrix, to be described shortly. All logs in this paper are t
the base. Our calculation ofi, reproduces known analytic results. Our calculatiomfor
givesiz = 0.4466+ 0.0006. It is worth noting that existing analytic results give extremel
tight bounds on the possible values #gy. In fact, by combining the results of Schrijver
and Ciucu, we have that

0.440076< 13 < 0.463107

The organization of the rest of the paper is as follows: in Section 2 we give a histor'
the problem; in Section 3 we sketch the main ideas of importance sampling; in Section
explain Sinkhorn balancing and comment on its relationship with the permanent; Secti
gives the details of our permanent approximation algorithm with subsections discussin
variance and some nonstandard programming details; and finally our resulsafiod A3
are given in Section 6.

2. BACKGROUND AND HISTORY OF THE PROBLEM

We define &rick to be ad-dimensional(d > 2) rectangular parallelepiped with sides
whose lengths are integers. A dimer is a brick whose volume is 2nAmick is a brick
with munits on each side. The number of different ways to fillabrick with dimers (with
no holes) we calFy. It is well known thatFy grows exponentially with the volume of the
m-brick, that is withmd in all dimensionsd, and it was proved in [9] that

im log(Fq)

m— o0 m

exists. The limit will be denotedly. Figure 1 shows one way to fill a 6-brick with dimers in
2D. To estimatd-4, we would need to find how many ways this is possible fomabricks.

There is extensive literature concerning the calculationyoford =2, Temperley and
Fisher [29] and Kastelyn [15] gave an analytic solution,

A2 = 0.29156090 - -.

Their method, based on finding a Pfaffian orientation for the lattice [16], does not ext
to dimension 3. The early paper by Fowler and Rushbrooke [6] gave rigorous bou



130 BEICHL AND SULLIVAN

=2

[

—_—
o
-

__

Be
(= -}

!_Fq
= )
= 9|~

FIG. 1. Example of one dimer covering of red (r) and black (b) sites.

0<A3=<0.54931. The upper bound was improved by Minc [19] to 0.54827 and recer
by Ciucu [5] to 0.463107 by using an elegant application of group theory.

Becausery is a nondecreasing function df a lower bound for; is A, =0.29156.
This was improved by Hammersley [8] to 0.418347 and by Priezzhev [22] to 0.4199
A conjecture by Schrijver and Valiant [28] on lower bounds for permanents would img
as noted by Minc [20], that; > 0.440075. Recently, Schrijver [27] proved that the lowe
bound is indeed 0.440076.

It was known [8] that computingq is equivalent to finding the permanent of a certail
matrix A. Here is what this means: Let us considet 2 first. Think of them-brick as a
checkerboard witln squares on a side. We label the squares red and black separately
arbitrarily as in Fig. 1. There are?/2 red squares and?/2 black squaresii must be even).
We then form an incidence matri,, of sizem?/2 x m?/2 with a 1 inposition(i, j) if red
squard touches black square and 0 otherwise. One dimer covering of the checkerboa
means a “path” through, that is, a selection of exactly one nonzero element in each re
and column. The dimer covering problem then translates into finding the number of p
through the matrixA. We assume a periodic boundary conditieftqroidal) so that every
square has exactly four neighbors (north, south, east, and west) and thus, thématnixl
have exactly 4 ones in every row and column. WHea3, them-brick is a cube with side
m, volumem?, and the matrixA is m3/2 x m®/2 with exactly 6 ones in every row and
column, because each red or black cube has neighbors on the top and bottom in addit
north, south, east, and west. We will &t; denote thei, j)th element ofA. Unless noted
otherwise, we will assume thdt= 3 for the rest of this paper.

Thepermanenbf A, which we will also write a$A| is

mé/2

Z Hai,(r(i)-

o i=1

Hereo ranges ovelSps) 2, the set of all permutations an®/2 letters. Note that wheA
is a 0—1 matrix, the only terms that contribute to the sum are for those permutation
where allg; () are nonzero, which is exactly when the set of trege,, are a path through
the matrix. So the number of paths through a 0—1 matrix, AAis Note also, that the
permanent of a matrix is similar to the determinant but it lacks the alternating signs of
terms. (In earlier notatiorfyg = | Anl.)

Atfirst glance, both the permanent and the determinant seem to ré&uileoperations.
However, the determinant is an alternating multilinear form and classic methods of lir
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algebra apply, giving algorithms to do the evaluationQiin®) operations. Computing
the permanent, however, reallydifficult. The best known algorithm for computing the
permanent exactly, due to Ryser, [23] requi@&2") operations. This is not a practical
method for this problem because the size of the matrices necessaryitgdiredgreater than
2000x 2000 for thosan’s necessary to obtain statistically reliable estimates of the limit

The matrix A arising from the monomer—dimer problem has a special, highly regu
structure. Fisher and Temperley [29] and, independently, Kastelyn [15] used the sp
structure, find a Pfaffian and thus reduce evaluating the permanent to linear algebra fc
2D case. Itis known, however, that the 3D case cannot yield to the linear algebra appre
For details see Hammersley [8] and Kenyon, Randall, and Sinclair [16].

Approximating the permanent also has been studied by many authors. Karmarkar, k
Lipton, Lovasz, and Luby [14] gave a permanent approximation algorithm whose runt
grows exponentially with matrix size. More recently, Barvinok [3] proposed a technic
based on “measure concentration.” In Section 5.2 we give some data comparing |
methods to ours for a few sample examples. Jerrum and Sinclair [13] developed a ran
walk algorithm that runs in polynomial time for some important classes of matrices.
excellent source of results using random walks can be found in the paper by Jerrun
Sinclair [13]. In [16], possible application is described. These methods could ultimat
give an independent approximation faoy.

3. IMPORTANCE SAMPLING

We use direct random sampling using an importance function rather than the more wi
used Markov chain random walk approach. Importance sampling is a form of Monte C
sampling designed to reduce the variance of the estimators for a given size sample [1

One formulation of importance sampling is as follows: we wish to estimate a sum

N
FN)=Y_ fop.

=1

where f is a known function, the; belong to some set of siz¢, andN is very large. In
our case, for am x n matrix, theo;€$,, the permutations on letters, soN =n! and

fo)=]Ja.c0-
i=1

A simple Monte Carlo method would be to chodgex N samplesg;, uniformly and

compute
(z?”_l f«n)) \
M

to get an average value &f In other words, take as a “typical” value féi(o') the sample

mean
Z:'v':l f (o)
M
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and then scale for the size of the sample spatelotice that the probabilityp(o) of
choosing any particular is 1/N so that our sum can be written

M M\ {7 p()) '

The technique of importance sampling is to use a nonuniform probalglity) that is
somehow better than uniform, in order to reduce the variance. Notice thvhigets large

ZM fop 1 <N f(o))
VI D= F(N
j=1 p(G]) M Z p(UJ) p(aJ) (N)

=1

and that this limit will hold foranyprobability distributionp(c). The ideal choice fop(o)
is

f(o)

F(N)’

p(o) =

That s, the weight assigneddais equal to its relative contribution to the desired sum. Thi
choice is ideal because it eliminates the variance,

1 (& f))\? M $2(0)
(B )t
va v (22: o)) — Jz:; (02 p(o)

Of course, thigp(o) requires prior knowledge df, the answer! Our aim is to get close to
the ideal importance functiom(o).

We choose a permutation by choosing one element from successive rows, using ar
mate of the percentage of the paths that go through that element (i.e. the probability t
path goes through that matrix location). We notice that

ajlALjl
|Al
is the fraction of paths passing through locationj) and that if, for eachA, we could

evaluate the following matrix, which we will call thmatrix balance m-bal(A), then we
would have a perfect importance function:

a1lAgl aglAral . awnlAual

|Al |Al [A|
a1lA2al  @2lAc2l . @nlAanl

m-bal(A) = [Al [Al [Al
anilAnal  @n2lAn2l . @nnlAnnl

[Al [Al |A|

HereA; ; denotes the minor oA obtained by deleting rowand columnj from the original
matrix A.
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Clearly, the(i, j)th element contains the percentage of paths that go through loca
(i, j). The mapA— m-bal(A) is known as the Bregman map and has been studied
Bregman [4], Bapat [2], and Linial, Smorodnitsky, and Wigderson [17]. NotentHaal(A)
is doubly-stochasticthat is, its entries are all nonnegative and all the rows sumto 1, as
all the columns. We choose a “perfect” path through the matrix as follows:

(1) Inrow 1, we select colump with probability

apj|Aqyjl
[A|

Notice that if we do select columj, then not only musg, ; # 0 but also the permanent
of the minor|A¢ ;| must be nonzero and so we know that tharestbe a path in the
minor that along withay ; gives a path in the matriA. We say thaty j is supportedif
there exists a path iA that goes through positiaf, j). Sog; j is supported if and only if
m-baI(A)i,,- #0.

(2) Look at the minorA, ; obtained by deleting row 1 and columrfrom the original
matrix A and matrix-balancé\, ;. In the first row (obtained from the second row of the
original A matrix), an element will look like

2i| Aa.jp. 2|
|ALjl ’

where| A« j, 2. | is the permanent of th@ — 2) x (n — 2) minor of A obtained by deleting
row 1, columnj and row 2, columrk. Select one particular columk of row 2 with
probability

aox|Aaien]
[Agjl

(3) Again take the minor oA deleting rows 1 and 2 and columpsndk. Minor-balance
that minor. Select another column, as above, etc.

(n) Continue in this way, until there is ax11 matrix left. This final matrix must be a
nonzero because at the previous (and every) stage of this procedure we select a nc
element with nonzero probability. But that element is an elemeAt (@¥hich thus must be
nonzero) times a permanent of a minor which is also nonzero.

So, if we were able to get the minor-balance of a matrix easily we would|#aexactly,
namely the product of the inverse probabilities chosen at each stage. That is,

AL Awiy]  [Ache

Al = :
|Aain| [Adivei| |Adiveirais]

.. | A(l,j1) - (n=1,jn_1) | .

Unfortunately, knowingm-bal(A) is equivalent to knowingA| and so computing it is
intractable [12].

There is an approximation to-bal(A) available in the Sinkhorn balance Af[25, 26].
This is the importance function that we use to calculate the dimer constants. In princ
one can Sinkhorn-balance a matrix in polynomial time [17].
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4. SINKHORN BALANCING

The Sinkhorn balance of a matriB,= s-bal(A), is a doubly stochastic matrix obtained
from A by multiplying by diagonal matriceB andE, B= D AE. The {, j)th entry ofB
we callb; ;. Sinkhorn [25] discusses why this is possible and Soules [26] gives converge
information. For more information on the mathematics of Sinkhorn balancing see [1, :
In practice, instead of determinirigy and E directly, we Sinkhorn balance by first dividing
all rows of A by their sum. This make& row stochastic but possibly not column-stochastic
So divide all columns by their sum. This mak&solumn stochastic, but possibly not row
stochastic. Continuing alternatively with rows and columns convergebad{ A). Sinkhorn
balancing is thus an application of the method of iterating projections in Hilbert sp:
[17, 24].

Soules [26] shows that Sinkhorn balancing converges linearly when all elements
supported. We take advantage of this by predetermining the unsupported element:
setting the Sinkhorn balance of those elements to zero (to which unsupported elen
would eventually converge) before doing the balancing computation. By an unsuppo
element we mean an elemdint j) of the matrix that is on no path. Recall that a path i
a matrix is a selection of one nonzero element from every row in the matrix, so that e\
column occurs exactly once. Hopcroft and Karp [11] hav&an®?) algorithm for finding
paths through a matrix. It is possible to alter their algorithm so that after finding one
in the matrix deciding if another element is on a pati@).

4.1. Relationships betweentsal and mbal

The purpose of this section is to give a heuristic explanation of why the algoritl
works as well as it does. Recall from Section 3 that ideatlyal(A) = m-bal(A), that
is, by j = A j|/IAl. Unfortunately this is not the case. In fact, for some matrices, the ra
of individual terms can be exponential in the size of the matrix, although these never o
for the dimer problem, except for very small minors. However, it is the case that the Sinkt
balanceis, inaloose sense, “as good as itcan be.” In particular, because the Sinkhorn b:
maximizes entropy for a given zero pattern in the set of doubly stochastic matrices, it te
to minimize the permanent, and a minimum permanent matrix for a given zero pattern wi
have the ideal property thatbal(A) = m-bal(A). We present some empirical evidence fo
the relationship between maximum entropy and minimum permanent and also give ar
proof of the maximum entropy property. In addition we prove that the effect of importar
sampling is to choose a path such that the expected value of the réfig;pfo |B| equals
one. We also use the properties of importance sampling to calculate the expected val
individual probabilities and their relation to row sums.

To explain in a little more detail, we first show that

bi,iIBi;l _ [A ]
|B| [A|

for b ; #0 (supportedy ;). This is Theorem 1. Fas-bal(A) = m-bal(A), we would like
|Bi,j|/1B] to equal one. This is unfortunately not the case. Itis only true|®gt/|B| =1
when all the row sums oA are equal. This is in Ando [1]. Ando also shows tiahas
all row and column sums equal if and only if its Sinkhorn balance is a matrix with mi
mum permanent among doubly stochastic matrices with a given zero pattern. The ent



APPROXIMATING THE PERMANENT 135

of a doubly stochastic matriB is —3 ; ;b j log(bi ). The Sinkhorn balance maximizes
entropy. This is Theorem 2. When the permanent is minimized, the entropy of that me
is maximized, if all the row and column sums are equal. However, if row sums are no
equal, it is possible that there is no matrix that minimizes the permanent for a given :
pattern. As a worst case we look at the upper triangular matrix avit inposition(n, 1).
Forn=4this is

hOOoOR
OO R R
OrR kLR
N

We will refer to this as the “bad” matrix. It is as far from having equal row and colun
sums as possibl¢B; j|/|B| = e*"2 for this matrix.

Figure 2 shows iterations of the Bregman map on this matrix. We plot permanent ve
entropy. The point at the top of the curve, maximizing entropy, is the Sinkhorn baBnce
By iterating the Bregman map d\ the points to the right are obtained. In this case, we c:
compute the inverse of the Bregman map to obtain the points to the IBftE¥en in this
worst case, the maximum entropy matrix is not that bad an approximation to the minin
permanent matrix for the purposes of this problem because of Theorem 3, which says
the expected value ¢8; j|/|B| is 1.

Bregman map, entropy vs log(permanent) for 4 x 4 "bad" matrix

38k .,+ ..... g .................... .................... .................. -

o5k .................... ............... ﬁ‘..‘_.' .................... .................

Entropy
N
T

T ST STURTOPY TP T

[0 )71 .................... .................... e .............. ",.:.._

Log(permanent)

FIG. 2. lterations of the Bregman map on the “bad” matrix.
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Random walk in Birkhoff polyhedron
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FIG. 3. Random walk through Birkhoff polyhedron.

A random walk on théBirkhoff polyhedronthe set of doubly stochastic matrices, als
supports the observation that the maximum entropy matrix is not a bad approximatic
the minimum permanent matrix. We illustrate this in Figs. 3 and 4. The random walk st
at the Sinkhorn balance of the ¥111 “bad” matrix and we plot permanent versus entrop!
Figure 4 is a three-dimensional version of Fig. 3, where we plot elapsed time asxie

The proof of the theorems follows.
LEMMA 1. The product along any path through B equgs/| A|.

Proof. B=s-bal(A), soB= DAE, whereD andE are diagonal. SGB| = |D||A||E]
and, hence, for any path

Bl o= T ¢ I &= I deo.

|A| 1<i<n 1<j<n 1<i<n

On the other hand,

H bi o) = H dia )8 i) = H dies i,

1<i<n 1<i<n 1<i<n

where the last equality holds becausé a 0—1 matrix.m
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Random walk in Birkhoff polyhedron
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FIG. 4. Random walk through Birkhoff polyhedron with time as the third dimension.
THEOREM1. Foralli, j,

AT 1Bl
A B

Proof.

bijIBijl =bij Zku,E(k) ,

o ki
where the sum ranges over all— 1)-pathso, omittingi and j. Hence,
n
bijlBiil =Y [ oxow-
o k=1
where thes range over all permutations whes¢i ) = j. Therefore,

|BI

bijIBijl = |Ai,j||A|

because there aféy j| such product terms and by the previous lemma, each one is ec
to|B|/|Al. =
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LEmMmA 2. If B is the Sinkhorn balance of a completely supparted matrix, A, then
for any doubly stochastic matrixD, whose support is contained in the support of A w
have that

|B|
Z di.j log(bi,j) = IOg(|A|>

i

Proof. BecauseD is doubly stochastic with support contained in the suppo#,ofie
may write

D=> 1P,.

where theP, are permutation matrices whose nonzero elements occur at nonzero locat
in B and thej, are positive with

S =1
For each, j, we have that

dj= ka_],

where the sum is over those permutations, that are nonzero at thie j element of the
matrix D. BecauseB is the Sinkhorn balance &, we have for each

1Bl
bi
H i,o(i) = |A|
by our first theorem. Therefore,
|B
log(bi »¢iy) = |
2_tog(or0) oo [x)
and, hence,
B
> e Y log(biga) Iog(:AD
o i

Re-arranging this double sum to collect the coefficient ofdoggives

Z(ZAUIJ>Iog(b. D= Iog<:A:)

The result now follows from the expression fihr; as sums of the,, ;.

THEOREM 2 (Maximum entropy). If D is any doubly stochastic matrix with support
contained in the support of Bhen

=Y dijlog(d j) < —> b jlog(b ;).
i i
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Proof. By the generalized arithmetic—geometric mean inequality (see, for exam
(21]),

=Y dijlog(dj) < —> d ;log(b )
i,j ij

and the result follows from Lemma 2

Note that we may choose
di,j Al .
THEOREM 3. The expected value is
| Bi j|>
El— | =1
< |BJ
Proof.
|Bi j|) 1B
g(_~ — (s Bul) /iy
E k; E

whereN is the number of samples. Fixingthe probability thatB; j|/|B| is chosen on
rowi is b j. So in the long run,

Zk1|B|1|/|B| Zbu _Bl_,

THEOREM4. The expected value is

1
el =) =m,
(bi,j) m

where m is the number ol’s in row i.

Proof. Suppose row is fixed:
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5. PROCEDURE

Here then is the procedure:

(1) Sinkhornbalancé. This produces a doubly stochastic maBiwith (i, j)th element
bi,;. Because row 1 sums to 1, we can select a colummnwith probabilityb, j,. We will
write this simply ad;, because at each stage we will always select from the first row of t
Sinkhorn balanced matrix.

(2) Sinkhorn balance th@ — 1) x (n — 1) minor Ay j, giving matrixB® with elements
b, select a columrj, with probabilityb{,’, where we use the first row &® as prob-

]!
abilities.

(k) Sinkhorn balance thén —k+ 1) x (n —k+ 1) minor of A obtained by removing
the first(k — 1) rows and columngy, ..., jx_1 from A. Call the resulting matriB®*—,

Select a columrjy from the first row of8*~% with probability b

(n — 1) Continue until there is only a:t 1 matrix left.

Then(l, j1), (2, j2), ..., (n, jn) is a path of 1's inA. The value ofl A| is then approx-
imated by the mean of terms like

111 1

b hD R L0
b“ bjz bis bj

Jn-1

Notice that this is the same as

A, j, A2,j, A3,j, An—1,jns 1

b, b b2 b2 T plo)’

Jn-1

5.1. Our Method as Importance Sampling

In our case, the sample spacé&ighe set of permutations anletters, whera is the size
of the matrix we need to evaluate. For dimension & m3/2 and so, for example, for an
18 x 18 x 18 cube the matrix will have size 29362916 andS,, = S»916Will contain 2916!
elements. Our estimatdr(o)/ p(o) is the characteristic function of a matrix pathAin S,
multiplied by 1/ p(o), which is obtained from the product of estimates of the relative numk
of paths at each stage of the selection. In other wdi@ds =1if a1 (1), 32,62, - - - » Bno()
are all 1's in the matrixA and p(o) = [TbY}. (D) = j1, 0 (D) = j2. 0 (3) = s, .. .. Note
that we compute the importance function as we proceed.

This is a subtle but important point. The Sinkhorn balance is not used as the estimatc
rather as the importance factor for selecting and scaling the estimate. The mean conv
to the permanent because the naive method converges to the permanent. How gc
bad the Sinkhorn balance is as an estimate of the minor balance does not affect wh:
approximation converges to but rather how fast it converges. (In our case it convergec
enough to get extremely good error bars.)
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Comparison for 11 x 11 "bad" matrix
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FIG.5. Comparison of convergence rates of permanent approximation algorithms, showing error. This i

11 x 11 “bad” matrix.

5.2. Performance

We compare the rates of convergence for the known permanent algorithms in Fig
and 6. Figure 5 is the 1 11 “bad” matrix. Figure 6 is the 38 32 dimer matrix and we
plot the error. We compare our technigue with the methods of Barvinok [3] and Karmar|
Karp, Lipton, Lovasz, and Luby [14]. The matrix used is the<l11 “bad” matrix, that is,
in a sense, a worst case for our algorithm.

5.3. Variance
The variance, var, in this calculation is by definition

1
var = N > (- 1AP),

g

whereN is the number of samples ardk the value obtained from a single sample, name
p(o)~*where ther is a permutation onletters whose selectionis described in Section 5. S

2 (L)Z
7\ p(o)

and
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Comparison for dimer covering
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FIG. 6. Comparison of convergence rates of permanent approximation algorithms, showing the error o
log of the mean. This is the 3232 dimer matrix.

Because of importance sampling, the probability that a particularqatti be chosen is
p(o). So,

var2—>z( z ))zp( o) — AP,

whereo ranges over all supported paths. Simplifying, this gives in the limit

1 1
var2—>Z——| =|A|<m§r’:m—|A|>.

But this is

(o)

because there até\| paths. Here-) denotes the uniform average ol paths, not just
paths chosen by importance sampling. Thus we have

AR i<i>_ )
var = 1A <|A| b))t
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and the relative variance is

vaf 1 < 1 > 1

|AIZ - |Al\ p(o)
If we think of p(o) as a probability distribution on the pathswe note that the relative
variance is determined by the degree to which ) approximates the “perfect” distribution
which would give each path weight equal tg A|.

It is also worth noting what the variance would be if we just choge; Liniformly.
Without importance sampling vawould be

L)
|Al\ p(o)
a very large quantity.

5.4. Data Structures Used in Permanent Computation

The matrixA used in this calculation is sparse. It containg®nzero elements where
isn x n. We make use of the sparsity by maintaining, instead of the mAtrarow-matrix
and a column-matrix, which contain respectively for a given row, the column number:
the next nonzero element and for a given column the row numbers for the next non
element. The actual values of the elements in the Sinkhorn balancing are kept as one
with pointers into it from the row-matrix and the column-matrix.

Sinkhorn balancing a minor iterates in two steps, row balancing and column balanc
For our data structure row balancing is straightforward. Column balancing is more elabo
Because we need to keep a record of which column& afe to be used in the minor we
wish to balance, we maintain this information by using a linked list of the active colum
When we delete a column (by choosing it in a path) we do so by marking it as deleted
then on the next traversal of the active-column list we do the delete from the list.

5.5. Computindog(]Al) when|A| is not Representable

One of the challenges in this calculation is that is not representable in floating point
when the matrix size is large. For exampig.” is around 0.45, so lq@As4|) = 0.45%
142/2~617. Thug A| ~ €%17. However, the logs of the individual sampleerepresentable
and we must use these, instead of actual estimates of the permanent. We want to esti

A" = log(Perm/m®,

where

But

1 1
= _exp( log[] = ) = ~1)log(by)).
115 exp( ogHbj) exp( Y (=D log(b)))
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All our samples ofy " (—1) log(b;) are approximately the same size. Gebe the smallest
integer contained in all of these terms. ThaiGds the minimum over all samples of

[Z(—l) log(pi )J :

So,
1
1T b =expC+R),
|

whereR; is the remainder aftet is subtracted from the log of the estimate of sampfo,

Ot § I R |
NZHbT_N ;exﬁ ) exp(R)

i=1 j
1
= exp(C) iZexp(m
= exp(C) E(exp(R)).
Thus,

Ag" = log(|Al)/m®
~ log(exp(C) £(exp(R)))/m?
= C + log(£(exp(R)))/m°.

Thus, it is possible to get the log of the average permanent even though each perman
not representable by using the average of exp of the remainder wghigbresentable.

6. OBSERVATIONS AND RESULTS

It is interesting to observe that on the whole, for different paths, the same probabili
occur and in approximately the same proportions. In other words, the probability distribu
p(o) is observed to concentrate near the uniform distributigi\L

Figure 7 shows calculations fap, and Fig. 8 shows calculations fag. The error bars
in these figures were obtained by taking twice the standard deviationvMemwhereN
is the number of samples. For both two and three dimensions we fit the input points wi
quadraticy =« + 8/x2, wherex are our valuesn and the correspondingare the values
log(|Aml)/m%, d=2, 3. Thea’s, the limiting values, are our approximations g and
A3. We use ¥x? instead ofx because it is more stable numerically to fiadby assuming
1/x2 =0 rather than taking a limit as gets large. The error bars on the limiting vatue
were obtained by doing a similar regression on the error obtained from the first fit.

Fora,, our result 0.291 agrees extremely well with the known analytic value, 0.29156C
For A3 then we get 0.446& 0.0006.
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